ANTHROPOLOGICAL ANALYSIS OF A SKELETON BELONGING TO MIDDLE BRONZE AGE, KOMARIV CULTURE, DISCOVERED IN SUCEAVA-CÂMPUL ȘANȚURILOR-STRADA PARCULUI (SUCEAVA COUNTY, ROMANIA)

Angela SIMALCSIK, Vasilica Monica GROZA and Robert Daniel SIMALCSIK
Romanian Academy – Iași Branch, Department of Anthropological Research,
Th. Codrescu Street, No. 2, Iași, Romania, antropologie.iasi@yahoo.com

Abstract. This paper concerns the anthropological analysis of the skeleton discovered in 2007 in the stone tomb (cista) in Suceava-Câmpul Șanțurilor-strada Parcuii (Suceava County, Romania). The funerary monument was chronologically ranked in the Middle Bronze Age, the Komariv culture. The osteological remains discovered in Suceava-Câmpul Șanțurilor-strada Parcuii belonged to a male, aged approximately 20-25 at death. The cranial index is dolichocranic. The frontal-parietal index is stenometopic. The occipital-parietal index is large-sized. The cranial bone relief is marked. The nasal region seems to have been narrow and quite high. The mandible is moderately robust, with medium robustness index. The postcranial skeleton is robust, clearly indented, with pronounced muscle insertions. The humeri record a euribrachic cross-section index. The femora are hyperplatymeric, with a prominent linea aspera and moderate pilaster. The tibiae show a mesocnemic cross-section index. The stature was appreciated only using the morphoscopic method and seems to be upper-medium to high-sized. The typological analysis shows predominantly Nordic characteristics in admixture with some Dinaric elements. Some postcranial bones have specific traits which could be suggest the muscular massiveness and a series of not very stressful daily activities. The skeleton remains from the inventory do not present any signs of any possible ante mortem or peri mortem traumas.

Keywords: Suceava-Câmpul Șanțurilor-strada Parcuii, Middle Bronze Age, Komariv (Komarov) culture, anthropological analysis

Cuvinte Cheie: Suceava-Câmpul Şanţurilor-strada Parcuii, perioada mijlocie a Epocii Bronzului, cultura Komariv (Komarov), analiza antropologică

- 59 -
Introduction

During the diggings undertaken for the set out of a new dwelling foundation in 2007, in the town of Suceava, on the Eastern side of the archaeological site perimeter called Câmpul Şanţurilor, there was identified an anthropic deposit (construction) of stones which proved to be a funerary monument. The authors of the archaeological excavation were chronologically ranked in the Middle Bronze Age, Komariv (Komarow) culture (approximately 2200/2000-1600/1500 B.C.). “Komarow” is the old name for this culture in Polish. The term “Komariw” is used in this study according to the practice nowadays, this village was included in the Ukraine territory after the second world war.

The place where the funerary monument was discovered is situated at about 300 m south-east of the Cetatea de Scaun, on the edge of the archaeological site called Câmpul Şanţurilor, 30 m away from the foundation of a church from the 15th century and its graveyard, at approximately 300 m to the west of the high terrace of Suceava River. The depth at which the stone building was discovered is 0.30-0.35 m. On the eastern side of the funerary building, at 0.40-0.45 m deep, but also in the tomb filling, inside the stone building there were discovered pottery shards from the Middle Bronze Age, namely the Komariv (Komarow) culture, which actually helped to make the chronological ranking of the discovery (Mareş, 2010).

The funerary building (stone box or cista) is heading north-east – south-west, it is rectangular, rounded in the edges as it is made of massive Sarmatian lime, built horizontally and vertically, while the north-eastern edge is rounded (Fig. 1) (Mareş, 2010).

Inside the stone building, 0.75 m deep from the present-day level, stretching on fertile soil, there was discovered a human skeleton, in crouching position on the right, in a south-west – north-east line, head to south-west and feet to north-east, looking to the east, left hand bent from the elbow lying on the trunk and the right hand straight next to the body (Fig. 2). Next to the skull (in the orbit area), at 10 cm distance there was found a hammer axe made of stone, ritually broken, still showing a small part of the hole for the handle (Mareş, 2010).

Figure 1. Suceava-Câmpul Şanţurilor-strada Parcului: the funerary building (stone box or cista) (Mareş, 2010).
Material and Methods

The preservation status of the skeleton found in Suceava-Câmpul Șanțurilor-strada Parcului is satisfactory, which made it possible to a detailed anthropological analysis, even if sometimes incomplete. The anthropological study began with the cleaning (by dry method) and restoration of the osteological remains, after which morphoscopic examination and collection of biometric data followed. Determination of sex and age at death was followed by conformative and morphoscopic analysis, typological analysis and investigation of the possible pathologies, anomalies and epigenetic characters.

In the anthropological analysis we used the main anthropometric measurements and some conformative and morphoscopic characteristics established from the values of direct measurements, and also from the conformation indices, by classical techniques recommended by Martin & Saller (1956-1966). Evaluation and categorization of the absolute and relative values made use of the dimorphic scales of Alexeev & Debetz (1964). The morphological observations were registered and analyzed with the methods
recommended by Broca (1875), Eickstedt (1934) and Olivier (1969).

The stature was estimated from the dimensions of the long bones of the upper (humerus, radius, and ulna) and lower (femur, tibia, and fibula) limbs. The dimensional scales proposed by Manouvrier (1892), Breitinger (1938), Bach (1965), Trotter & Gleser (1951; 1952; 1958) were also employed. The framing of stature in the appropriate sex category was made by Martin & Saler (1956-1959).

For the typological characterization we have used the methods and scales of Eickstedt (1934), Vallois (1934; 1944; 1953; 1965), Coon (1939), Bunak et al. (1941), Biasutti (1959), Comas (1960), Boev (1972), Baker (1974), and King (1981).

Results and Discussion

Preservation status. The skeleton is incomplete and fragmented. The fractures and fissures that led to fragmentation are produced post mortem. The cranial skeleton appears slightly better preserved than the postcranial one. The skull was fragmented during the cleaning process of the skeleton, and it was restored to calvaria. The cranium is represented by frontal, parietals, occipital, left temporal, the part of the left zygomatic, left maxilla and left half of the mandible. With many absent segments, the postcranial skeleton is represented only by incomplete bones from the limbs (femurs, tibiae, humeri, radii and ulnae). We add to this inventory a fragment derived from the left hip bone, from the cotyloid cavity.

The bone sample contains, also, parts of the long bones’ epiphyses, but they are highly degraded and fragile. Reattaching them to the shaft bone was impossible. The postcranial skeleton, in contrast to the skull, is highly affected by taphonomic processes. The external bony layer has got a consistent calcareous (limestone) deposits. Besides the petrified deposits, diaphyses of the femora, tibiae and humeri shows some black islands (?) derived, probably, from the pedological layer in which deceased has been submitted. Note that on any bone present in the sample (complete, restored or fragmented) we have not identifies any burn marks. Some diaphyseal fragments show tooth traces of the rodents produces post mortem. The bone inventory of the analyzed skeleton can be seen in figure 3.

Sex determination. The quite robust appearance of the skeleton, the shape of the cranium, the quite smooth surface of the frontal bosses, the pronounced supraorbital relief, the appearance of the forehead (relatively narrow and slightly sloping), the rounded orbital upper margins, the pronounced curvature of the occipital, the big mastoid process, the characteristics of the mandible (medium-sized robusticity, square chin), the teeth size (moderate to large), the quite large cotyloid cavity of the preserved hip fragment, and the
pronounced postcranial bone relief (joints and muscle insertions), all these lead us to define this skeleton, definitely, that being male.

Age at death estimation. Even though the bone inventory is incomplete, we can say that the skeleton shows no signs of involution, of degenerative bone conditions, neither the pathological processes which may be related to the advanced age. The tissue from the femoral and humeral meta-epiphyseal region is compact (1st stage by Nemeskéri et al., 1960). The epiphyses of the long bones are welded to the diaphyses. The IIIrd molar is present, with closed root apexes. The occlusal surface of the IIIrd molar crown is physiologically functional. The dental wear, estimated by Brotwell (1981), has got the 3rd degree, indulgently 3+. The molars cusps are slightly worn. The occlusal surface shows some small dentin islands, this situation is valid only for the 1st molar and for the canine teeth. The incisors show visible linear islands of the dentine. The cranial sutures are completely open (by Buikstra & Ubelaker, 1994). According to all these features, the age at death of this man is between 20-25 years old (adultus category).

Figure 3. Bone inventory of the skeleton discovered in Suceava-Câmpul Șanțurilor-strada Parcului.
Biometrical data and morphological features. The cranial anthropometric value regarding the main dimensions and indices analyzed are listed in Table 1. The longitudinal diameter (eu-eu) of the neurocranium (Figs. 4-7) offers a very long size; the transversal one (eu-eu) presents a large size, their report giving a cranial index of dolichocranic type. The forehead is moderately blunt. The minimum diameter of the forehead (ft-ft) is middle-sized. The maximum frontal width (co-co) offer a large size, meaning a stenometric frontal-parietal index, therefore indicating a spherical contour of the forehead, with diverging margins from the parietals. Regarding the degree of occipital curvature, the skull presents a bulgy and short occipital. The width of the occipital (ast-ast) belongs to the very big-sized category. The occipital-parietal index is large-sized.

The shape of the neurocranium in norma verticalis is ovoid (Fig. 7), in norma occipitalis is the one of “house” (Fig. 6). The cranial bone relief is marked. Regarding the development of the glabellar relief, it indicates 4th degree, the supraorbital – 1st-2nd degree, the mastoid – the maximum degree. The external occipital protuberance indicates 1st-2nd degree. The nuchal muscles impressions are very obvious. The development of the mastoid apophysis indicates 5th degree.

The extremely poor preservation status of the facial skeleton makes him immeasurable, with some exceptions. Some morphoscopic observations can be made. The zygomatic bones are quite high and moderately revealed. Their orientation/position cannot be determined. The palate presents a divergent parabolic shape, a moderate to large depth and a medium width (enm2-enm2). The torus palatinus is missing. The nose seems to have been narrow and quite high. The maximum width of the nasal aperture (al-al) is very small. The shape of the pyriform aperture belongs to the “trench” type. The canine fossa is slightly outlined (1st degree). The nasal spine was, probably, medium-sized. It was broken during cleaning process.

The mandible, of which was preserved only the left half (Fig. 8), is moderately robust. Its depth is small. The height of the horizontal ramus is medium to high. The vertical ramus is short, wide and gently sloping. The mandibular mental protuberance is quite marked, with the pyramidal aspect. The gonial relief appears quite pronounced, easily designed out of horizontal ramus plane. The robustness (section) index of the mandible is medium. The torus mandibularis is missing.

The general statement of the dentition supports the age at death of this man (20-25 years old) and the excellent status of the dental health. In the bone inventory are present only the left upper and lower dental arcades (Figs. 8-9). This individual has not suffered ante mortem tooth loss. The left central upper incisor has been lost post mortem. In the alveoli are present all the teeth from the two left arcades, as follows: central and lateral incisors, 1st and 2nd premolars, 1st, 2nd and 3rd molars. In total, 15 teeth are present in the alveoli, seven on the left upper arcade and eight on the left one. The dental wear (incisal and occlusal) is very low. The loss of tooth structure is physiological, attrition-type, produced during the functionality of the stomatognathic system (chewing movements). None of the teeth from the sample don’t have dental calculus or tooth decay. The dental hypoplastic defects are missing. There are no signs of the alveolar resorption.

The postcranial skeleton (extremely incomplete and fragmented) has got pronounced muscle insertions. Because of the failure of the restoration process, we took from the limb bones (humerus, radius, ulna, femur and tibia) only the diameters and the circumferences (Table 2). The humerus (Fig. 10) shows pronounced deltoid muscle
insertions. This bone doesn’t have a supratrochlear foramen, and records a euribrachic diaphyseal section index. The section indices for radiuses and ulnae show the same situation. The femur (Fig. 11) is hyperplatymeric in the subtrochanteric region, with pronounced muscles insertions, forming pits and ridges. *Linea aspera* is prominent. The pilasters are presents in both femurs. The pilasteric index is slightly higher at the left femur. The low mesocnemic index indicates a tibial flattening. Tibias don’t have the hyperdorsiflexion signs.

The high degree of fragmentation and the absence of the limb bone lengths led to the impossibility of the stature’s estimation. Using only the morphoscopic method, we appreciate for this man an upper-medium or a high-sized stature.

The typological analysis was made, mainly, based on cranial measurements. In addition, we took the cranial and postcranial morphoscopic characteristics. The skeleton shows predominantly Nordic characteristics (namely: the cranial indices, the shape of the cranial vault, the mandible features, the skeletal robustness), to which it joins, to form a mix, some Dinaric elements.

![Figure 4. Norma frontalis of the skull.](image1)

![Figure 5. Norma lateralis of the skull.](image2)

![Figure 6. Norma occipitalis of the skull.](image3)

![Figure 7. Norma verticalis of the skull.](image4)
Table 1. Cranial anthropometric values regarding the main dimensions (mm) and indices analyzed, and their classifications into appropriate categories (↓ = at the lower end of the category; ↑ = at the upper end of the category).

<table>
<thead>
<tr>
<th>Martin No.</th>
<th>Characters</th>
<th>Measured value (mm)</th>
<th>Appropriate category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>g-op (maximum cranial length)</td>
<td>194</td>
<td>very long</td>
</tr>
<tr>
<td>8</td>
<td>eu-eu (maximum cranial breadth)</td>
<td>145</td>
<td>large ↓</td>
</tr>
<tr>
<td>9</td>
<td>ft-ft (minimum frontal breadth)</td>
<td>95</td>
<td>middle</td>
</tr>
<tr>
<td>10</td>
<td>co-co (maximum frontal breadth)</td>
<td>122?</td>
<td>large ↓</td>
</tr>
<tr>
<td>12</td>
<td>ast-ast (maximum occipital breadth)</td>
<td>120?</td>
<td>very large</td>
</tr>
<tr>
<td>43</td>
<td>fmt-fmt (upper facial breadth)</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>al-al (nasal breadth)</td>
<td>22?</td>
<td>very narrow</td>
</tr>
<tr>
<td>63</td>
<td>enm_2-enm_2 (internal palatal breadth)</td>
<td>40?</td>
<td>middle</td>
</tr>
<tr>
<td>68</td>
<td>mandibular length</td>
<td>64?</td>
<td>very short</td>
</tr>
<tr>
<td>69</td>
<td>id-gn (chin height)</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>69,3</td>
<td>Height of the mandibular body</td>
<td>32</td>
<td>middle ↑</td>
</tr>
<tr>
<td>69,3</td>
<td>Breadth of the mandibular body</td>
<td>13</td>
<td>middle ↑</td>
</tr>
<tr>
<td>70</td>
<td>Maximum ramus height</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Minimum ramus breadth</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Indices

<table>
<thead>
<tr>
<th>Measured value</th>
<th>Appropriate category</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/1</td>
<td>Cranial index</td>
</tr>
<tr>
<td>9/10</td>
<td>Frontal-transversal index</td>
</tr>
<tr>
<td>9/8</td>
<td>Frontal-parietal index</td>
</tr>
<tr>
<td>12/8</td>
<td>Parietal-occipital index</td>
</tr>
<tr>
<td>9/43</td>
<td>Frontal-parietal index</td>
</tr>
<tr>
<td>71/70</td>
<td>Mandible branch index</td>
</tr>
<tr>
<td>69,3/69,3</td>
<td>Mandible robustness index</td>
</tr>
</tbody>
</table>

Figure 8. Mandible (the left half).

Figure 9. The left half of the maxilla.
Table 2. Postcranial anthropometric values regarding the main dimensions (mm) and indices analyzed, and their classifications into appropriate categories (↓ = at the lower end of the category; ↑ = at the upper end of the category).

<table>
<thead>
<tr>
<th>Martin No.</th>
<th>Characters and indices</th>
<th>Measured (mm)/calculated value and appropriate category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>left</td>
</tr>
<tr>
<td>5</td>
<td>Maximum diameter at midshaft</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Minimum diameter at midshaft</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Minimum circumference of the diaphysis</td>
<td></td>
</tr>
<tr>
<td>6/5</td>
<td>Diaphyseal cross-section index</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Minimum circumference of the diaphysis</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Transverse diameter at midshaft</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Anterior-posterior diameter at midshaft</td>
<td></td>
</tr>
<tr>
<td>5/4</td>
<td>Diaphyseal cross-section index</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Anterior-posterior diameter</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Medial-lateral diameter</td>
<td></td>
</tr>
<tr>
<td>11/12</td>
<td>Diaphyseal cross-section index</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Anterior-posterior midshaft diameter</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Medial-lateral midshaft diameter</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Midshaft circumference</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Medial-lateral subtrochanteric diameter</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Anterior-posterior subtrochanteric diameter</td>
<td></td>
</tr>
<tr>
<td>6/7</td>
<td>Pilasteric index with pilaster ↓</td>
<td>106</td>
</tr>
<tr>
<td>10/9</td>
<td>Platymeric index with pilaster ↓</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Anterior-posterior midshaft diameter</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Medial-lateral midshaft diameter</td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>Maximum diameter at the nutrient foramen</td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>Medial-lateral diameter at the nutrient foramen</td>
<td></td>
</tr>
<tr>
<td>10b</td>
<td>Minimum circumference of the diaphysis</td>
<td></td>
</tr>
<tr>
<td>9/8</td>
<td>Midshaft cross-section index</td>
<td></td>
</tr>
<tr>
<td>9a/8a</td>
<td>Platymeric index</td>
<td></td>
</tr>
</tbody>
</table>

Pathologies, nutritional stress markers. The bone anomalies/pathologies show how the bone structure did not follow the normal structure under the influence of several genetic, exogenous or teratogenic factors. Unlike the major ones, which most of the times are lethal, less serious anomalies/pathologies only leave marks on the skeleton and cause slight health problems (Barnes, 2012).

On tabula externa ossis cranii, in the area next to the lambda point, both the occipital and the parietals of the skeleton under study present foramina of cribra cranii externa type, also called porotic hyperostosis. Porotic hyperostosis is a pathological condition which affects the external part of the skull vault, seen in the appearance of a
pointed network/structure which can be irregular (less serious) or uniform (very serious) (Walker et al., 2009). In this case, it is a first degree condition (by Stuart-Macadam, 1991). The porosity seems to have been active at the time of death (there are no signs of regeneration).

The skull porosity is a meaningful-suggestive indicator of some nutrition deficiencies and chronic illnesses, thus becoming an indirect and non-specific marker of the life quality and conditions, more precisely the health state and the nutrition habits (Walker et al., 2009; Piontek & Kozlowski, 2002). Generally speaking, the porosities seen on tabula externa ossis cranii develop during early childhood. They are less frequent among teenagers and much rarer among adults (Stuart-Macadam, 1985; Mays, 1998).

In case it is not spread on the whole bone system, the first cause for the appearance of skull porosity, there should be considered sideropenic anemia (Ortner, 2003), namely iron deficiency, hence the risk to become ill is higher, especially for catching diseases (due to bacteria, viral illnesses, mycotic or parasitic diseases). The iron deficiency is given by insufficient quantities of iron in food or there are deficiencies in iron absorption or iron metabolism. There is a direct link between the acute gastroenteritis or parasites infections and the iron quantity, as they influence each other. Other causes which might lead to the appearance of porotic hyperostosis are vitamin C, D, B₁₂, B₆, B₉ deficiencies as well as other inflammatory processes in the skull, osteomyelitis, and traumas (Walker et al., 2009).

![Figure 10. Humeri, posterior view.](image)

![Figure 11. Femora, posterior view.](image)
The non-metrical traits also called discontinuous, epigenetic or discrete traits/features are expressions of the variations noticed on the skull bones (including dental structures) and postcranial bones. Their importance lies on the hypothesis that they are more or less hereditary and might be used in relation to the ancestors, proving to be useful in estimating the biological affinity of the disappeared populations (Carson, 2006). As regards the non-metrical features, generally speaking, and the dental characteristics in particular, the analysis gains relevance only in the case of a population study, nevertheless this does not apply for this study. Still, we feel obliged to mention that the skeleton under study presents such discontinuous features.

Thus, the analyzed skeleton which belonged to an adult male (20-25 years old), discovered in Suceava-Câmpul Şanţurilor-strada Parcului, chronologically ranked in the Middle Bronze Age, the Komariv (Komarow) culture presents two non-metrical features on the top skull and two on the dental structures.

On the labdoid suture of the skull, in its right part, we notice the presence of a supplementary bone of small dimensions, called Wormian bone or intra sutural bone. The Wormian bones are anomalies of the normal fusion model of the ossification centres (Jeanty et al., 2000). Some authors correlate their appearance to congenital abnormalities or abnormalities of the central nervous system. Most authors consider that the appearance of intra sutural bones is controlled by genetic factors and it represents a variant of normality included in the group of non-metrical traits (El-Najar & Dawson, 1977).

The left supraorbital region of the frontal bone presents an indentation also called the supraorbital notch – a non-metrical feature of the skull which appears as a reaction of the body to adapt by thermoregulation to the low temperatures in the environment, so as not to lose heat through the neuro-vascular system. As a consequence, the nerves and the blood vessels become thicker and deeply settled in the bone structures. The presence of such an indentation might suggest, in an indirect way, the cold and humid climate in the area where the individual lived (Tomaszewska et al., 2013).

For the dental non-metrical features, the authors recommend they should be registered separately for the two arcades: 20 traits for the upper arcade and 16 for the lower arcade (McCoy, 2004; Bailey, 2006; Richard Scott, 2008; Leroux, 2012). For this particular study we mention only two such features in the dentition of the skeleton under study. The mandibular first molar presents an additional cusp, the occlusal surface presenting five cusps in all. The mandibular third molar has three extra cusps, showing on the occlusal surface a total of seven cusps.

Activity-induced musculoskeletal stress markers, entheseopathies. At the level of the postcranial skeleton, on certain bones of the upper and lower limbs of this skeleton, we have identified a series of special characteristics which have been appreciated by the literature in the field as functional adjustments or adaptations, indicators of the physical activity and life-style (Larsen, 1997; Molleson, 2007).

The humeri present highlighted insertions of the deltoid muscles (having a role in moving the arm forward, backward and on the side), the brachial biceps (playing a role in the flexion and extension of the forearm and the supination movement) and the pectoral (playing the role of bringing the arm upwards). This muscles group has left deep and rough signs on the humerus diaphyseal surface, which suggests that this person did activities which intensely used the arm muscles (such as repeatedly lifting heavy objects) (Molleson, 2007). The Euribrachic category of the humeral diaphyses comes to support this statement.
The femurs, in the region of the gluteal tuberosity present a moderate to pronounced subtrochanteric prominence, seen in the crest and cavity/fossa. Even more, the femoral diaphysis presents a pilaster and the linea aspera shows enthesophytes – bony projections which are actually ossified entheses (which are, in fact, the connective tissue between tendon or muscle ligament and bone). These characteristics are strictly related to the intense activity of the muscle groups inserted on the back side of the femur: vastus lateralis and vastus medialis (playing a role in the extension of the lower limb), adductors muscle (contributing to the adduction, flexion and external rotation of the hip), the short head of the biceps femoris (influencing the hip extension and the knee flexion) and the gluteus maximus (influencing the abduction and the lateral rotation of the lower limb) (Teodorescu, 1982). This group of muscles left prominent and rugged signs, together with enthesophytes, which suggest an overstressing due to repeated activities such as walking or running on long distances, sustained walking on uneven ground, climbing, jumping (Molleson, 2007). The femoral hyperplatymergy noticed in both hip bones comes to enforce these suppositions.

We have to underline the fact that the skeleton remains from the inventory do not present any signs of any possible traumas, all the fractures or fissures which led to the fragmentation of this skeleton appeared post mortem. We should not overlook the fact that the bone inventory does not include the back spine, ribs, the pectoral arch and the pelvic arch, and the feet and hand bones.

Considering the bone inventory (unfortunately incomplete) of the skeleton under study, we support up to a certain point the statement made by Ion Mareş (2010), according to which the skeleton might belong to a person who held an important position in the community. The social status is revealed by the three important elements exposed by the archaeologists who studied the funerary monument: the presence of the hammer-axe, the structure of the stone building and the considerable effort made by community members to turn the funeral into a complex event, to sacrifice time and make physical efforts to expose the passing away of a young man. In Ion Mareş’ opinion (2010), the funerary monument discovered at Suceava-Câmpul Şanțurilor required the use of approximately two tons of gritstone, most probably taken out from the bank of Suceava river. From the tomb to the edge of the Suceava river terrace there are approximately 300 meters. The effort made to transport the stone and build the funerary monument came from a large number of community members and the workload is huge, undoubtedly group-work. It is clear that not every community member received such a “treatment” when they passed away, only those who held an important position or, maybe, were high society.

The stone tomb discovered at Suceava-Câmpul Şanțurilor-strada Parcului, chronologically ranked in the Middle Bronze Age, the Komariv (Komarow) culture is the only one ever discovered in the town of Suceava (Mareş, 2010). In the Suceava County there have been discovered and investigated from the archaeological point of view several funerary monuments belonging to Komariv (Komarow) culture, out of which we mention here only a few: the tumular necropolises from Horodnic de Jos, in Vârfu Colnicului point (Kaindl, 1903; Ignat, 1981; Niculică et al., 2014; Niculică, 2010) and Brădet point (Kaindl, 1903; Burtănescu, 2002); the tumular necropolis from Adâncata-Imaş (Niculică et al., 2005; Budui & Niculică, 2012, 2013; Niculică et al., 2013); the necropolis from Hârtop-Sub Plopi (Ursulescu & Popovici, 1987); the stone box (cista) tomb from Şerbâneşti (Ignat & Popovici, 1980). Other discoveries made in the area, included in the Costișa-Komarow
(Komariv) culture are the ones from Prăjeni-Lutărie (Ursulescu & Sadurschi, 1988) and from Cotârgaci, both in the Botoșani County (Moscalu, 1989; Perianu, 1989; Dumitroaia, 2001).

Unfortunately, out of the monuments mentioned above, only the tumular necropolis from Adâncata-Imaș (Suceava County) benefited from a proper anthropological analysis (Simalcsik & Niculică 2012). The study of the osteological series from Adâncata-Imaș highlighted the presence of a total of 18 individuals (14 inhumed and 4 incinerated) in the eight tumuli where there were discovered human bone remains. Male skeletons are predominant. As regards the age at death, out of the 18 deceased, 12 died right after the age of 20 (adults), hence having gone over the critical childhood age. The other 6 people are distributed as follows: in a single case the age cannot be estimated and in the other 5 cases, the people did not reach the age of 20, which can be rendered in a percentage of 28% out of the total population which "succumbed" in childhood or teenage years. Unfortunately, the conservation state of the skeleton material from Adâncata-Imaș made it impossible to undertake some detailed typological and paleopathological analyses.

Conclusions
The disinterred skeleton from the stone tomb, discovered in Suceava-Câmpul Șanțurilor-strada Parcului, chronologically ranked in the Middle Bronze Age, the Komariv (Komarow) culture, belonged to a male, aged approximately 20-25 at death (in the adultus category). Even if the skeleton is not complete, the conservation state of the remaining bones in the inventory is satisfactory.

The bones are robust, clearly indented, both in the skull segment, as well as in the postcranium. The humerus is euribrachic, the femur is hyperplatymeric (with pilaster), and the tibia is mesocnemic. The stature, assessed only in morphoscopic traits seems to have been upper-medium or even high.

From the typological point of view, this skeleton presents mostly Nordic features, in a combination with certain Dinaric traits.

The teeth present a slightly worn occlusal / masticatory surface. None of the teeth is affected by calculus deposits, decay or any other infectious processes, a situation which proves an excellent oral health. This man did not lose any teeth ante mortem. Enamel hypoplasia is not present in any way, which suggests that during childhood (the period when the dental crowns are formed and the teeth crowns are calcified) the man did not experience any severe physiological stress (serious illness, malnutrition). The slight teeth wear of physiological type indicates the man’s preference for soft food. We should not overlook the young age at the moment of death (20-25 years old).

Mention should be made that the skeleton does not present any severe bone pathology. The only pathological disease that could be identified is porotic hyperostosis (cribra cranii externa) – an indirect clue for nutritional stress and the health state. The exocranial porosity, active at the moment of death is localized in the area of the lambda point (on the occipital and parietals). The presence of porotic hyperostosis in itself, even if not very serious in this case, indirectly indicates a nutritional deficiency, hence slight health problems. In the absence of generalized bone porosity, as the first cause for the appearance of exocranial porosity, there should be mentioned the iron deficiency which entails an increased risk of illnesses, especially catching diseases. Other possible causes which might be mentioned here are C, D, B_{12}, B_{6}, B_{3} vitamins deficiency.
The analyzed skeleton also presents a few non-metrical traits (two cranial and two dental). We mention the presence of an additional/accessory ossicle (Wormian bone) of small dimensions on the right part of the lambdoid suture – as a variant of normality. In the supraorbital area of the frontal bone there is noticed the presence of the supraorbital notch, which is an indirect indicator of the cold and humid climate where the person lived. Out of the dental abnormalities we underline the presence of additional cusps (1st molar has five cusps and the 3rd molar has seven cusps).

Some postcranial bones have specific traits which could suggest the muscular massiveness of this man, but also a series of not very stressful daily activities. The characteristics of the humerus somehow betray the physical efforts made especially using the arms, such as, maybe, lifting of some burdens. The structural features of the femur and tibia indicate activities such as walking and running on long distances, fast walking on rugged/uneven land, maybe climbing or jumping.

In conclusion, except nutritional deficiency but not very serious (most probably a slight sideropenic anemia) this man did not have any other health problems. The teeth were in excellent health. The abnormalities noticed on the skeleton remaining bones are actually variants of normality. Even more, the skeleton does not present any feature that would indicate exaggerated physical effort, the occupational indicators show only moderate physical labour. There are no signs of possible traumas which might have occurred ante mortem or peri mortem, all the fractures/fissures which led to the skeleton fragmentation appeared post mortem.

The results of the anthropological study on the skeleton discovered in the stone box (cista) from Suceava-Câmpul Șanțurilor-strada Parcului should be considered a positive element in the overall knowledge on the behaviour and funerary customs of the Komariv (Komarow) population within the borders of our country.

We plan on doing a comparative study in the near future, in the fortunate situation in which the archaeological research from Suceava region will bring to light the necropolis of Komariv (Komarow) culture, the same one mentioned as possible to exist by the Ioan Mareș – coordinator of the team which discovered the funerary monument from Suceava-Câmpul Șanțurilor-strada Parcului.

Acknowledgements
The team responsible for uncovering and studying the funerary monument from Suceava-Câmpul Șanțurilor-strada Parcului consists of archaeologists from Bucovina Museum from Suceava, as follows: PhD Ion Mareș (responsible), PhD Bogdan-Petru Niculică, Ticu Dolenschi, Paul Ciurari, Sânziana Bedreagă, and Cătălina Ungureanu. We thank them for our involvement in the analysis of this material. We thank especially Mr. Ioan Mareș for the osteological material made available for the anthropological study and for information provided on the archaeological context. Also, we thank Mr. Bogdan-Petru Niculică for the references on archaeological research on the Komariv (Komarow) culture from Romania.

References

Leroux, H., 2012. The use of dental nonmetric traits for intracemetary kinship analysis and cemetery structure analysis from the site of Middenbeemster, the Netherlands. Dissertation presented in fulfillment of the requirements for the degree of Master in science of human osteology and funerary archaeology. Leiden University, Faculty of Archaeology, Leiden.

