Experimental evidence of a xylose-catabolic pathway on the pAO1 megaplasmid of Arthrobacter nicotinovorans

Marius Mihăsăń*, Marius Ștefan, Lucian Hrițcă

Abstract

The soil bacterium Arthrobacter nicotinovorans carries the pAO1 catabolic megaplasmid which enables it to grow on xylose (Ighis and Brondich, 2003). Besides the well-characterized pathway for nicotine degradation (Brondich et al., 2006), pAO1 carries a gene cluster of a hypothetical pathway for carbohydrate utilization (figure 1). This cluster consists of ORFs of a transcriptional regulator, of a sugar ABC-transporter and of several putative dehydrogenases and oxidoreductases. Previously, we established that the pAO1 orfD gene encodes an aldohex-4-dehydrogenase (Mihăsăń et al., 2008) and orfR encodes an sugar dehydrogenase. The current work is focused on experimental identification of the catabolic pathway substrate of this latter pathway.

Methods

Directional gene cloning was performed using standard methods using the pGEX3 plasmid, protein expression was achieved using auto-inducible medium as described elsewhere (Mihăsăń, Ungurâns & Artenie, 2007). Protein purification was done using standard IMAC techniques (Assieul M Frederick et al., 2002) on Fast-Flow Ni-chelating Sepharose (Amersham Biosciences, Sweden). Molecular weight determination of the native protein was performed by GPC, using a prepacked HiLoad 16/60 Superdex 200 column calibrated with GPC Wide Range calibration kit (Amersham, Biosciences, Sweden). Antibodies against purified proteins were developed in rats and used for Western-Blots. Carbohydrate metabolism assay was performed with the API 50CHL (Biomerieux, France) per producer’s indications.

Results

GntR was purified to homogeneity as a 29 kDa His-tagged recombinant protein. As indicated by GPC it consists of a monomeric protein with a native molecular weight of 32 kDa. The specific UV/Vis spectra showed only a single peak at 280 nm common for all proteins and did not indicated the presence of any colored cofactors. This is in good agreement with the fact that Pdcβ-family proteins contain a winged helix-turn-helix (wHTH) domain responsible for DNA binding, and not a Zn-finger or any other metal containing domains.

OxRE was purified as a 45 kDa His-tagged protein was purified. The native molecular mass of 163 kDa determined by GPC indicated that the protein was a tetramer in solution. Metal content analysis of the purified preparations (table 1) showed that the enzyme binds 2 Zn2+ atoms/protein monomer.

Conclusions

Although our previous in-silico blind docking experiments indicated tagatose as the putative ligand for several proteins in the pathway (Mihăsăń, 2010), the current work showed that tagatose is degraded by both the pAO1+ and pAO1- strains. Nevertheless, the docking scores always placed xylose among the top five ligands. Here, the Western-Blots show a clear connection between the pAO1 encoded proteins and the D-xylose metabolism and thus identifying the substrate of the second catabolic pathway coded by the A. nicotinovorans megaplasmid.

Bibliography

Acknowledgements. This work was supported by CNCSIS-UEFISCUS, project number PN II- RU 337/2010.